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Abstract

We propose an innovative ensemble framework for combining conceptually distinct
portfolio rules that existing combination methods cannot accommodate. This framework
enables researchers and investors to harness established and emerging advances in
portfolio choice by diversifying the idiosyncratic risks of alternative rules while
leveraging their unique strengths. By maximizing the joint utility of candidate
portfolio rules and dynamically adapting to their time-varying relative performance,
our approach substantially enhances decision-making from an investor’s perspective.
Out-of-sample evaluations spanning over forty years reveal substantial utility gains
in diverse applications, including cross-sectional stock portfolios and market timing
strategies.
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1 Introduction

Over time, numerous ingenious portfolio rules (PRs) have been developed, offering diverse

techniques for constructing portfolios across a cross-section of risky assets. Many of these

approaches aim to address the empirical shortcomings of the seminal Mean-Variance (MV)

framework proposed by Markowitz (1952). These contributions include shrinkage methods

(e.g., Ledoit and Wolf 2004; Barroso and Saxena 2022), strategies leveraging the factor

structures implied by asset pricing models (e.g., MacKinlay and Pástor 2000), and volatility

timing strategies (e.g., Kirby and Ostdiek 2012). Additional advancements encompass

parametric portfolio policies (e.g., Brandt et al. 2009; DeMiguel et al. 2020), risk-parity

strategies (e.g., Maillard et al. 2010), and machine learning approaches that exploit asset

characteristics (e.g., Gu et al. 2020; Cong et al. 2021; Chen et al. 2024). Moreover, DeMiguel

et al. (2009), Duchin and Levy (2009), and Yuan and Zhou (2022) demonstrate that the 1/N

rule, which avoids estimation error by disregarding sample information, often outperforms

optimization-based rules in out-of-sample (OOS) scenarios.

Similarly, numerous PRs have been developed for optimal market timing—i.e., allocating

between an aggregate equity portfolio and a risk-free asset. Some of these rules leverage

macroeconomic data and financial ratios through combination methods (e.g., Rapach et al.

2010), a sum-of-the-parts approach (Ferreira and Santa-Clara, 2011), or Bayesian predictive

models (e.g., Dangl and Halling 2012; Johannes et al. 2014; Pettenuzzo and Ravazzolo 2016).

Others utilize forward-looking information embedded in option prices (e.g., Pyun 2019).

Recent advancements have also exploited long-short return anomalies in the cross-section of

stocks, incorporating machine learning methods and shrinkage techniques (Dong et al., 2022).

Each PR, whether based on the approaches outlined above or any other method, is

defined by the information set it utilizes and the technique it employs to translate that
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information into asset weights for a given asset universe.1 Fundamentally, each PR represents

a specialized lens for navigating the asset universe. While PRs differ in their strengths and

limitations, this diversity provides a compelling rationale for their combination. Combining

PRs is analogous to diversification across assets for investors with a concave utility function,

helping to mitigate the idiosyncratic risks inherent in individual PRs. These risks include

the assumptions embedded in each rule and the estimation errors that arise when limited

data are transformed into portfolio weights. Additionally, since different PRs may leverage

distinct information sets, combining them can capture complementary aspects of the

return-generation process. This is particularly valuable in the context of asset returns, which

are characterized by a notoriously low signal-to-noise ratio. Statistically, PRs can be seen

as estimators, and in various contexts, combining estimators has been shown to be both

theoretically sound and effective in empirical applications. Therefore, combining PRs is a

robust strategy, avoiding the pitfalls of relying on a single PR in pursuit of a “silver bullet”

while prematurely dismissing alternatives.

The existing literature has developed several combination approaches aimed specifically

at controlling estimation error and improving OOS performance. However, these approaches

are generally applicable only to specific and limited sets of PRs, typically within the MV or

Global Minimum Variance (GMV) framework, often including the 1/N rule (e.g., Kan

and Zhou 2007; Tu and Zhou 2011; Kan et al. 2022; Lassance et al. 2023). Furthermore,

determining the optimal combination typically relies on specific distributional assumptions

about the asset return generating process. Consequently, these strategies provide a relatively

narrow toolkit for diversifying across PRs and enhancing asset allocation performance.

Overall, the existing literature does not fully leverage the relative strengths of the diverse

1In our proposed approach, we take the asset weights implied by each candidate PR as given. As shown
in Section 3.1, the asset weights resulting from the combination of PRs can be readily derived.
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solutions that have been or could be proposed.

To the best of our knowledge, no general utility-based optimization framework exists for

combining a broad and conceptually distinct set of PRs. For example, for a cross-section of

assets, there is no utility maximization framework that can integrate a shrinkage-based

method such as Barroso and Saxena (2022) with a factor-structure-based strategy like

MacKinlay and Pástor (2000), or rules derived from cross-sectional characteristics (e.g.,

Brandt et al. 2009; Gu et al. 2020). Similarly, existing methods cannot combine market

timing rules based on equity premium point forecasts, such as the sum-of-the-parts approach

of Ferreira and Santa-Clara (2011), with Bayesian density forecast rules like Dangl and

Halling (2012), or methods exploiting cross-sectional characteristics (Dong et al., 2022).

The main novelty of our framework lies in its generality, enabling the combination of an

arbitrary number of conceptually distinct PRs while retaining many appealing features. In

our framework, the investor has access to a library of candidate PRs. In each period, they

select a combination of PRs that would have maximized their pseudo OOS utility.2 By

optimizing the utility derived from combining PRs, our approach:

i) Relies on the pseudo OOS returns of the candidate PRs. The optimal combination of

PRs in our framework is based on OOS utility gains. To implement this approach, only the

assigned asset weights of the candidate PRs and their corresponding pseudo OOS returns are

required. This enables the combination of conceptually distinct PRs, as each provides a

weight vector for asset allocation, while avoiding the need to predict the moments of the PRs’

returns.. Importantly, the candidate PRs themselves may or may not rely on estimated

2We focus on economic utility in the objective function rather than a statistical criterion. Statistical and
economic evaluation criteria are not necessarily closely aligned. Leitch and Tanner (1991) demonstrate
that accurate predictions based on statistical measures, such as the root mean squared error, can lead
to unprofitable portfolio allocations. Similarly, Cenesizoglu and Timmermann (2012) find only a weak
relationship between economic utility measures and statistical forecast accuracy in an application to equity
premium forecasts.
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moments of asset returns in their construction. Each candidate PR is entirely free to adopt

any rationale for assigning asset weights.

ii) Functions as an ensemble framework. Our approach assigns combination weights

based on the pseudo OOS utility of the combined PRs, rather than the utility generated by

individual PRs. Analogous to building a sports team, the framework does not necessarily

select the best individual players but focuses on constructing the best overall team. This

ensemble approach inherently accounts for the time-varying interdependencies among the

OOS returns of the PRs, including correlations and higher-order co-moments. Importantly,

there is no conceptual limit to the number of PRs that can be included in the ensemble.

iii) Enables adaptive learning. Our approach incorporates a forgetting factor that

emphasizes recent economic gains over profitability from the more distant past. This adaptive

learning mechanism facilitates the dynamic adjustment of combination weights, allowing for

rapid shifts when warranted by empirical evidence. At the level of asset returns, Farmer et al.

(2023) document short periods of predictability for aggregate stock returns by specific

predictors, interspersed with longer periods of unpredictability. Similarly, our framework is

designed to identify and leverage (combinations of) PRs that perform well “locally” in time.

iv) Makes no assumptions about the data-generating process (DGP) for assets’ or PRs’

returns. Our approach for determining combination weights does not rely on any assumptions

about the return-generating process. However, it is important to note that individual

candidate PRs may or may not incorporate such assumptions. Even if their assumptions are

not literally true, these PRs can still add value to the ensemble.

Our data-driven framework evaluates the extent to which each PR provides incremental

empirical value relative to other candidates in the pool. As a result, our combination

framework acts as a natural filtering mechanism: if a candidate PR is grossly misspecified and
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contributes no value to the ensemble, it will automatically be excluded from the combination.

We apply our framework to two classic portfolio choice problems: allocating across a

cross-section of U.S. stocks and allocating between the S&P 500 index and Treasury bills. To

enhance diversification benefits, we construct a pool of candidate PRs, incorporating both

established and emerging methods. Using over forty years of OOS evaluations, we find

substantial utility gains from combining PRs. The utility generated by our framework is

higher than, or comparable to, that of the (ex-post) best-performing candidate PR. Moreover,

our approach outperforms previously proposed combination methods, which can also be

incorporated as candidate PRs within our combination framework.

We also empirically highlight the benefits of the ensemble framework and adaptive learning.

Combination weights shift rapidly over time, demonstrating that different (combinations of)

PRs perform optimally at different periods. Analyzing the combination weights across

various market and economic states reveals that simpler PRs tend to be favored during

stable economic periods, while more complex PRs tend to be selected during turbulent

times. In our application to a cross-section of stocks, we observe that the PR performing

best individually receives the lowest overall weight in the ensemble—a reflection of the

framework’s emphasis on jointly generated utility. In our market timing application, we

observe significant variations in economic utility depending on the method used to translate

the predictors from Welch and Goyal (2008) into asset weights. Methods that account

for complex return-generating processes—incorporating multiple predictors, time-varying

coefficients, and stochastic volatility—demonstrate a clear advantage.

Deeper analyses provide insights into the mechanisms driving utility gains and the

potential for expanding the pool of candidate PRs. These analyses reveal that our method,

by maximizing utility, selects PR combinations that balance predictive power for asset
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returns with the ability to anticipate their variance. Furthermore, average utility gains

increase as more PRs are included in the pool, suggesting potential for further improvement

by expanding the set of candidate PRs.

Researchers and investors who base asset allocation decisions on asset pricing theories or

empirical regularities face multiple dimensions of uncertainty. First, there is uncertainty

about which asset pricing rationale or empirical regularity to trust. Second, even when one is

chosen, it often only suggests which variables (e.g., predictive factors for return moments)

might be relevant for portfolio construction. Third, there is uncertainty about which

econometric or machine learning techniques are best suited to translate this information into

portfolio weights. Our ensemble approach addresses these challenges by helping researchers

and investors navigate these overlapping layers of uncertainty. The primary contributions of

our study are methodological. Specifically, we propose a general framework that:

(a) Leverages the relative strengths of various solutions to portfolio choice problems. By

integrating PRs from diverse strands of the literature, the framework acts as a unifying tool,

bridging approaches that might otherwise evolve along increasingly siloed paths;

(b) Enables the evaluation of the incremental empirical value—or lack thereof—of newly

proposed PRs, providing a systematic method to assess their contribution; and

(c) Addresses model uncertainty by reducing ambiguity for investors regarding which PR to

rely on. By combining complementary PRs, the framework mitigates the risks associated

with relying on a single PR in decision-making.

We propose that this ensemble approach has the potential to transform how portfolio

choice problems are addressed in the future. Rather than seeking to identify a single, superior

PR, the focus shifts to discovering PRs that complement the ensemble and enhance its

overall performance. Our applications are designed to showcase the effectiveness of this
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methodological framework. Importantly, we do not endorse any specific candidate PR.

Instead, we emphasize that researchers and investors can adapt our framework to their

preferred sets of PRs.

The remainder of the paper is organized as follows: Section 2 positions our approach

within the existing literature. Section 3 details our methodology. Section 4 presents the

empirical analysis. Section 5 highlights the relative strengths of our combination method,

and Section 6 concludes and highlights promising directions for future research.

2 Relation to the literature

Our work connects to two primary strands of the portfolio choice literature. First, it aligns

with combination approaches for PRs. In this context, studies such as Kan and Zhou (2007),

Tu and Zhou (2011), and Kan et al. (2022) have developed strategies to optimize OOS

performance under estimation risk in MV portfolio selection problems. Specifically, Kan and

Zhou (2007) proposed an optimal three-fund rule—comprising the risk-free asset, the sample

MV portfolio, and the sample minimum-variance portfolio—to maximize expected OOS

utility. Building on the insight that combining a simple method with a sophisticated one can

balance the bias-variance trade-off, Tu and Zhou (2011) integrated this three-fund portfolio

with the 1/N rule. Kan et al. (2022) extended this analysis to scenarios without a risk-free

asset, while Lassance et al. (2023) explored combining the 1/N rule with the sample MV

portfolio.

The optimal combination rules proposed in the cited works have provided valuable

analytical insights into portfolio construction under estimation error, operating under the

assumption that asset returns are identically and independently distributed (iid) with a

multivariate normal distribution. In contrast, our proposed framework makes no assumptions
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about the return-generating process. More significantly, it is not constrained to specific

designs of PRs, such as those based on MV or GMV. Instead, our approach accommodates

the combination of conceptually distinct PRs, including those previously incompatible with

existing methods due to their diversity.

While existing combination approaches primarily focus on reducing estimation risk

by combining just two different PRs, our method tackles this challenge through several

additional strategies. Specifically, it avoids reliance on estimates of the moments of PRs’

returns, employs a parsimoniously parameterized framework based on pseudo-OOS returns

rather than expected returns, and allows for additional regularization of the combination

weights. Notably, the absence of effective methods to manage estimation error seems to be a

key reason behind the historical focus on combining only two PRs in prior research. As Tu

and Zhou 2011 observe, “Theoretically, if the true optimal combination coefficients are known,

combining more than two rules must dominate combining any subset of them. However, the

true optimal combination coefficients are unknown and have to be estimated. As more rules

are combined, more combination coefficients need to be estimated, and the estimation errors

can grow. Hence, combining more than two rules may not improve performance.”

In our empirical applications, we demonstrate that combining five or six PRs within our

framework generally outperforms combining only two rules—while leaving ample room to

integrate even more candidate PRs. However, the strength of our framework extends well

beyond mitigating estimation risk. By enabling the combination of PRs based on diverse

premises—spanning modeling assumptions, information sets, and methods for translating

information into asset weights—our approach offers a significantly broader and more versatile

foundation for PR integration. Consequently, our framework allows researchers to fully

leverage the potential of both existing and emerging advancements in asset allocation.
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Importantly, our method is not a competing alternative to the aforementioned works but

rather a complementary approach. Combination methods themselves can be treated as

PRs and included as candidates within our ensemble, provided they align with the specific

investment problem. For instance, we incorporate previously proposed combination methods,

such as those in Kan et al. (2022), into our empirical analysis and demonstrate that their

performance improves when combined with additional PRs. For a comprehensive conceptual

and empirical discussion of how our approach relates to existing PRs, see Section 5.

Second, our work aligns with approaches that directly optimize economic utility, bypassing

the two-step process that requires estimating moments of returns. Examples include

parametric portfolio policies (Brandt et al., 2009; DeMiguel et al., 2020), a boosting approach

(Nevasalmi and Nyberg, 2021), and a method utilizing deep reinforcement learning (Cong

et al., 2021). These techniques focus on optimizing economic utility for specific portfolio

choice problems at the individual asset level, whereas our approach operates at a higher level

by maximizing utility through the combination of PRs. Furthermore, our work complements

these methods, as they can be included as candidate PRs within our framework and combined

with other PRs.

3 Methodology

3.1 Basic structure

Consider a set of M candidate PRs, indexed by m = 1, . . . ,M . At any given time s, each PR

assigns weights to N assets, indexed by n = 1, . . . , N , based on information observed up to
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s− 1, the date of portfolio construction.3 We denote the (exogenously) assigned asset weights

of the m-th PR at time s as ω(−s)
m,s , an N × 1 column vector given by

(
ω
(−s)
m,s,1, . . . , ω

(−s)
m,s,N

)′
.

The superscript (−s) indicates that information revealed at time s is not used to determine

the portfolio allocation at s− 1.

The N × 1 column vector of gross asset returns measured over the period [s− 1 : s] (e.g.,

one month in our applications) is denoted as R̃s =
(
R̃s,1, . . . , R̃s,N

)′
, where R̃s,n = 1 + r̃s,n,

and r̃s = (r̃s,1, . . . , r̃s,N)
′
.4 The pseudo OOS gross return for the m-th PR at time s is

expressed as:

Rm,s = ω(−s)
m,s

′

R̃s. (1)

The investor’s optimization problem is to maximize the conditional expected utility of

the portfolio’s (gross) return, Rp,t, based on information available up to time t− 1. This is

achieved by determining the optimal combination weights {wm,t}Mm=1 assigned to the PRs:

arg max
{wm,t}Mm=1

Et−1 [U(Rp,t)] = arg max
{wm,t}Mm=1

Et−1

[
U

(
M∑
m=1

wm,tRm,t

)]
, (2)

where U (·) represents the utility function.

The conditional expectation of the utility jointly generated by the returns of the PRs, as

expressed in Equation (2), cannot generally be computed without imposing restrictive

constraints on the PRs’ return-generating process. In addition, several PRs, such as the 1/N

rule, may not even generate a conditional distribution of expected returns. To address this,

we assume that the combination weights remain constant over time. This assumption implies

3In this paper, we focus on PRs that allocate within the same investment opportunity set. However,
our framework can accommodate PRs that allocate across different opportunity sets with partial or no
overlap in assets. For example, one PR might allocate across stocks, while another PR might allocate across
commodities.

4Depending on the specific portfolio choice problem, returns can be defined as raw (total) returns or
excess returns.
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that the combination weights maximizing the conditional expected utility at any given time

are consistent across all prior periods. As a result, we can reformulate Equation (2) as an

unconditional optimization problem.

At time t− 1, if a track record of pseudo OOS returns generated by the PRs is available

over the interval [τ : t− 1], we replace the expected utility in Equation (2) using its sample

counterpart—the sum of period-by-period realized utilities. The optimization problem thus

becomes:

w∗t = arg max
{wm}Mm=1

t−1∑
s=τ

U

(
M∑
m=1

wmRm,s

)
, (3)

where wt = (w1,t, . . . , wM,t)
′. This unconditional formulation of the optimization problem

bypasses the need to estimate (co)moments of the PRs’ returns. Furthermore, by replacing

Equation (2) with pseudo OOS returns, we mitigate the impact of discrepancies between

expected and realized returns—a frequent challenge in asset allocation.

More recent data are likely to carry greater predictive relevance than older data, as

they originate from a market or economic environment more similar to the current one.

To account for these plausible economic dynamics, we allow realized joint utilities to be

weighted differently in the optimization process. Specifically, we maximize the weighted

historical performance jointly generated by the PRs:

w∗t = arg max
{wm}Mm=1

t−1∑
s=τ

αt−1−s · U

(
M∑
m=1

wmRm,s

)
, (4)

subject to
M∑
m=1

wm = 1; wm ≥ 0, m = 1, . . . ,M . (5)

Here, α represents a (fixed) forgetting factor used to weight past profitability, while the

constraints in Equation (5) ensure a convex combination of the candidate PRs. By applying
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exponential down-weighting to past performance and re-optimizing at each point in time,

this approach enables the adaptive selection of combination weights, even though they are

technically treated as constant over the interval [τ : t− 1] within each optimization at time t.

This approach allows us to account for the relative strengths of candidate PRs over

specific time periods, enabling more rapid weight adjustments compared to the unweighted

formulation in Equation (3).5 The forgetting factor and the weight constraints will be

discussed in greater detail in Sections 3.4 and 3.5, respectively.

For purposes such as executing trades and calculating transaction costs, it is essential to

determine the asset weights resulting from the combination of PRs. With the optimized

combination weights at hand, we can derive the implied weights for the N assets. These

weights, ω∗s , aare expressed as linear combinations of the asset weights assigned by the PRs

(summarized in the matrix Ωs) and the optimized combination weights w∗s :

ω∗s
[N×1]

= Ωs
[N×M ]

· w∗s
[M×1]

, (6)

where

Ωs =


ω
(−s)
m=1,s,n=1 . . . ω

(−s)
m=M,s,n=1

... . . . ...

ω
(−s)
m=1,s,n=N . . . ω

(−s)
m=M,s,n=N

 .

The utility of aggregate individual asset weights becomes apparent when the positions for

a given asset, as implied by the candidate PRs, partially or fully offset one another. Instead

of trading the positions implied by each PR individually, an execution desk trades the net

5The discounting applied here may resemble reinforcement learning in some respects. However, while
reinforcement learning discounts future rewards, our approach discounts past utility to reduce its influence on
the optimal combination weights relative to more recent utility. Additionally, our optimization is technically
framed as a one-period problem, where, in each period, we maximize the (discounted) utility up to that
point in time. Reinforcement learning holds promise for dynamic optimization problems, particularly in
data-driven approaches. As discussed in Section 2, PRs based on reinforcement learning at the asset level can
be added to the pool and combined with conceptually distinct PRs.
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positions derived from the combined PRs, thereby reducing transaction costs.

3.2 Power utility and alternative utility functions

In our empirical applications, we assume a power utility investor. By adopting power

utility preferences at the level of combining PRs, the framework inherently accounts for

preferences related to higher-order moments and tail risk properties. This holds true even if

the candidate PRs in the library do not optimize for power utility but instead rely on MV

approximations or are not based on an optimization framework at all. Requiring candidate

PRs to optimize for power utility from the outset would exclude a large portion of promising

PRs. Importantly, PRs not specifically designed to maximize power utility preferences can

still make valuable contributions to the ensemble (Paye, 2012).

For an investor with power utility preferences, the optimization problem in Equation (4)

can be more specifically expressed as:

w∗t = arg max
{wm}Mm=1

t−1∑
s=τ

αt−1−s ·

(
M∑
m=1

wmRm,s

)1−γ

1− γ
, (7)

where γ denotes the relative risk aversion coefficient.

Our framework accommodates alternative utility functions, allowing flexibility in its

application. Specifically, it can incorporate any utility function that can be expressed as the

sum of discounted utilities. For instance, a mean-variance utility with discounting can be

used:

w∗t = arg max
{wm}Mm=1

t−1∑
s=τ

αt−1−s

{
M∑
m=1

wmrm,s −
γ

2
(wmrm,s)

2

}
, (8)

where rm,s = ω
(−s)′
m,s r̃s. Alternatively, utility functions that emphasize downside risk can

also be incorporated.
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3.3 Our combination framework as a stacking algorithm

Our proposed combination framework, as expressed in Equation (7), can be classified as a

stacking algorithm. Stacking is a well-established meta-learning approach for combining

estimators, widely studied in the machine learning and statistics literature (Wolpert, 1992;

LeBlanc and Tibshirani, 1996; Breiman, 1996; Van der Laan et al., 2007; Polley and Van

Der Laan, 2010). We adapt and extend this approach to maximize a utility-based criterion

within a time-series framework, incorporating exponential discounting to account for the

temporal structure of the data.

Stacking is an ensemble method that evaluates the cross-validated risk or utility of the

combined candidate estimators (in this case, the PRs) rather than assessing their risk or

utility in isolation. As a result, the combination weights in Equation (7) are derived from an

ensemble perspective, inherently capturing time-varying interdependencies among PRs’

returns. Under power utility preferences, the entire joint distribution of PRs’ returns is

utilized in Equation (7) to optimize the combination weights.

Another important feature of stacking is its use of cross-validation to prevent overfitting.

Our combination approach relies on pseudo OOS returns, which requires adjustments for the

time-series structure of the data. Consequently, standard K-fold cross-validation cannot be

directly applied. Instead, our approach is akin to leave-one-out cross-validation, omitting

information revealed at time s for portfolio construction at time s− 1; see Equation (1).

Figure 1 illustrates the general mechanism of leave-one-out cross-validation. In our context,

at each point in time and for a given PR, the blue dots represent the information used to

determine the next period’s portfolio allocation, while the red dots represent the resulting

pseudo OOS returns. Our method is centered on maximizing the utility derived from these

red dots.
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Figure 1: Schematic illustration of leave-one-out cross-validation. The illustration is adopted from
Hyndman and Athanasopoulos (2018).

Including information revealed at time s when determining the allocation at time s− 1

would result in in-sample returns. In such a scenario, the combination would likely assign all

weight to the PR with the highest in-sample returns. However, PRs that perform well

in-sample may exhibit poor OOS performance.

Stacking is a true combination method rather than a selection approach. This implies

that, even asymptotically, positive combination weights can be distributed across multiple

PRs rather than being concentrated solely on the most successful PR in the library. This

characteristic is particularly appealing in the realistic scenario where none of the candidate

PRs fully captures the true data-generating process. However, if a single candidate PR

dominates all possible combinations, that PR will receive the entire weight. In this way,

selection is effectively nested as a special case within the stacking framework.

Stacking algorithms are grounded in a robust statistical foundation. Under certain

conditions, Van der Laan et al. (2007) demonstrated their asymptotic oracle performance,

meaning that the learning algorithm asymptotically matches the performance of the best

possible ex-post choice for a given dataset, based on the defined evaluation criterion,

among all weighted combinations of the estimators. Beyond these theoretical guarantees,

stacking-based learning algorithms have been shown to be adaptive and robust estimators,

even in small sample settings, across both artificial and real datasets (Wolpert, 1992;

15



Breiman, 1996; LeBlanc and Tibshirani, 1996; Van der Laan et al., 2007; Polley and Van

Der Laan, 2010). In many cases, they perform as well as, or even better than, the ex-post

best candidate estimator.

By adopting a stacking algorithm, our combination framework leverages a methodology

with excellent statistical properties, providing a strong theoretical justification for our

approach.

3.4 The forgetting factor

The exponential forgetting factor α ≤ 1 in (7) emphasizes the recent history of past

performance. In our empirical analysis, we adaptively select α from the grid Sα =

{0.90:0.01:1.00}. The data-adaptive estimation of the forgetting factor follows Giraitis et al.

(2013), who demonstrate that exponential down-weighting with a data-driven forgetting

factor is the most robust approach for addressing structural changes in time series, based

on extensive simulations and empirical studies. Similarly, Beckmann et al. (2020) report

significant empirical gains from using data-adaptive estimation of the exponential forgetting

factor in the context of adaptive model selection.

The lower α, the more heavily performance in the distant past is down-weighted.

For instance, with monthly data, if α = 0.99, economic utility three years ago retains

approximately 70% of the weight given to last month’s utility. We set α = 0.90 as the lower

limit of the grid, as this value implies extremely rapid forgetting: utility from three years ago

receives only about 2% of the weight assigned to utility from the most recent period. The

effective window size is given by 1/(1− α), which corresponds to 10 months for α = 0.90.6

6Note that
∞∑
s=0

αs = 1
1−α for α < 1. The upper bound α = 1 implies no down-weighting of older data,

nesting the standard recursive window estimation as a special case.
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FLEXPOOL refers to the combination in which the value of α is adaptively selected in

each period from the grid Sα. In our empirical analysis, we also consider two additional

benchmark combinations: STATPOOL, where α = 1, and a second approach that assigns

equal weights to the PRs, irrespective of their past performance.

By enabling the down-weighting of older performance, the combination weights can be

rapidly adjusted to changing environments when empirically warranted. Another advantage

of the forgetting factor approach is its ability to parsimoniously capture evolving dynamics

using a single parameter. This simplicity makes it less susceptible to estimation errors

compared to parameter-rich alternatives like regime-switching models. At each point in

time, the optimal time-dependent value αt is selected from the grid Sα as the one that has

generated the highest utility over the interval [τ ∗ : t− 1]:

α∗t = arg max
α∈Sα

t−1∑
s=τ∗

U
[(

w∗t−1 (α)
)′

Rs

]
. (9)

Here, τ ∗ = τ + τ0, where τ0 denotes the number of observations reserved for the initial

optimization of the combination weights. The vector Rs = (R1,s, R2,s, . . . , RM,s)
′ represents

the PRs’ returns, and w∗t−1 (α) denotes the optimal combination weights derived from

Equation (7), conditional on a given value of α.

It is important to note that down-weighting is applied only when maximizing the

combination weights in Equation (7) for a specific value of α. The selection among different

values of α, however, is based on the recursive evaluation described in Equation (9).

3.5 Weight restrictions and additional regularization

Although stacking imposes no inherent restrictions on the combination weights, convex

combinations of estimators have been shown to enhance the stability of the final estimator
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(see, e.g., Breiman, 1996; Van der Laan et al., 2007). Additionally, ensuring convexity allows

us to maintain any constraints on asset weights imposed at the level of the candidate PRs

(e.g., no short selling, sector weight restrictions, etc.) at the level of the combined PRs as

well.

Although our proposed combination approach leverages pseudo OOS returns and is

parsimoniously parameterized, estimation risk at the stage of determining combination

weights remains a concern in finite samples. There is no guarantee that the optimized

combination weights will outperform simple benchmarks, such as equally weighted PRs. In

fact, in finite samples, including more candidate PRs does not necessarily result in better

performance. While adding PRs can enhance diversification potential, it also increases

estimation risk due to the greater number of combination weights that need to be estimated.

The optimal number of PRs to include in the library is ultimately an empirical question,

influenced by the return-risk profiles of the candidate PRs and the interdependence structure

of their returns. To address the estimation risk of combination weights, our framework

conveniently supports the direct application of regularization techniques to mitigate these

challenges.

As a regularization strategy, an `0-constraint can be imposed on the combination weights,

for example:

‖w‖0 = k. (10)

Here, ‖w‖0 =
M∑
m=1

1 (wm 6= 0) counts the number of the non-zero combination weights, where

1 (·) denotes the indicator function. The tuning parameter k, with k ≤M , controls the size

of the subset of PRs that are combined. Empirically, k can be determined in a data-adaptive

manner, selecting the value that maximizes pseudo-real-time OOS performance.
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To further regularize the combination weights, one could eliminate the need for estimating

the combination weights altogether by imposing an additional constraint alongside (10)—that

all non-zero weights are equal. This can be achieved by introducing:

wm ∈
{

0,
1

k

}
, m = 1, . . . ,M , (11)

The use of equally weighted subsets of PRs in constraint (10) is motivated by the empirical

success of equally weighted subsets in combination approaches, particularly in forecast

combinations; see, e.g., Dong et al. (2022). As an alternative for regularization, the

`1-constraint can be employed instead of the `0-constraint in (10). When the `1-constraint is

combined with the condition that all non-zero weights are equal (11), this approach serves as

a computational shortcut to equally weighted subsets (Diebold and Shin, 2019).7

In principle, there is no upper limit to the number of PRs that can be included in the

analysis. In our main empirical applications, which involve five to six PRs, we imposed only

convex combination weights, as specified in constraint (5). On average, economic gains

increased with the number of PRs included when we additionally applied constraint (10); see

Figure 4 for our cross-section application with the largest 50 stocks and Figure 6 for the

market timing application.

We also experimented with the additional weight constraints (10) and (11), selecting k in

a pseudo-real-time, data-driven manner. While we did not observe any empirical gains from

these additional regularization constraints in our settings, they may prove highly beneficial in

applications involving a larger number of candidate PRs.

7A complementary robustness strategy to additional weight constraints involves using bootstrapped
returns up to a given point in time to estimate combination weights at that point; see, e.g., Bonaccolto
and Paterlini (2020) and Kazak and Pohlmeier (2023). While this strategy could still produce adaptive
combination weights, it may reduce the flexibility to rapidly adjust the weights. Block bootstrap methods,
however, could be adapted to allow for exponential down-weighting of older performance by introducing an
additional tuning parameter. We leave this extension for future research.

19



4 Empirical analysis

4.1 Application to a cross-section of stocks

4.1.1 Investment universe and empirical study design

The investment universe in this application consists of the largest 50 U.S. stocks, with

monthly excess returns constructed from CRSP data. We use data spanning 1957:01 to

2020:12, including only stocks listed on the NYSE, NASDAQ, or AMEX with a code of 10 or

11. At the beginning of each month t, the investment universe comprises the largest 50

stocks (by market value) with non-missing monthly returns over the previous 120 months. In

the rare cases where a stock’s return is missing for month t, we set the excess return to

zero.8 It is important to note that the largest 50 stocks can change from month to month,

making the investment universe dynamic.

Each candidate PR that we maintain in our library must assign weights to the 50 stocks

at the beginning of each month. We get the first OOS portfolio returns in 1967:01. We

reserve the first 60 OOS returns for the initial optimization of the PR weights according to

(7) and another 60 months for the initial tuning of the forgetting factor α according to (9).

Our first OOS evaluation takes place in January 1977. We then go forward and run the

optimization based on an extended sample of 61 OOS portfolio returns and choose the value

of the forgetting factor also based on an additional observation. We proceed recursively and

end up with an evaluation sample that spans the period from 1977:01 to 2020:12 period. We

consider a power utility investor with a relative risk aversion of γ = 3. Our setup only

considers risky assets. If we wanted to include a risk-free asset, we could do so by adding a

candidate PR that is represented by a vector of zeros, since the returns in this application

8The choice of a rolling 120-month estimation window follows, among others, DeMiguel et al. (2009) and
Kan et al. (2022).
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are defined as excess returns.

Each candidate PR in our library must assign weights to the 50 stocks at the beginning

of each month. The first OOS portfolio returns are obtained in 1967:01. We reserve the

initial 60 OOS returns for the optimization of the PR weights according to (7) and an

additional 60 months for the initial tuning of the forgetting factor α as described in (9). Our

first OOS evaluation takes place in January 1977. From that point onward, we proceed

iteratively: the optimization is updated based on an extended sample of 61 OOS portfolio

returns, and the forgetting factor is chosen using an additional observation. This process is

repeated recursively, resulting in an evaluation sample that spans 1977:01 to 2020:12. We

consider a power utility investor with a relative risk aversion of γ = 3. Our setup focuses

solely on risky assets. If we wished to include a risk-free asset, we could do so by adding a

candidate PR represented by a vector of zeros, as the returns in this application are defined

as excess returns.

4.1.2 Candidate PRs

We consider the following five candidate PRs:

• 1/N :

This PR assigns equal weights to all assets. The 1/N rule does not rely on sample

information, thereby avoiding estimation error. Empirical studies have shown that it

often outperforms a wide range of estimated optimal portfolios across various data sets

(DeMiguel et al., 2009; Duchin and Levy, 2009; Yuan and Zhou, 2022).

• Volatility timing (VOLTIME):

Kirby and Ostdiek (2012) propose a volatility-timing strategy in which the weights are
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determined as follows:

ωt+1,n =

(
1/σ̂2

t+1,n

)η
N∑
n=1

(
1/σ̂2

t+1,n

)η , n = 1, ..., N . (12)

Here, σ̂2
t+1,n denotes the estimated conditional variance of the n-th risky asset at time

t+ 1, calculated using a rolling window of past returns from t− 119 to t. This PR

disregards any sample information regarding conditional means and covariances. The

parameter η controls the aggressiveness of the timing strategy, specifically the tilt

toward the least volatile stocks. Kirby and Ostdiek (2012) consider the values η = 1, 2,

and 4; we set η = 4.

• Maximizing expected OOS utility: Kan et al. (2022) develop combination portfolios

that achieve the highest expected OOS utility for a MV investor in a setting without

a risk-free asset. Their approach combines the GMV portfolio with a sample zero-

investment portfolio, explicitly accounting for estimation risk to control the exposure

to the sample zero-investment portfolio. When this exposure is set to zero, the GMV

portfolio is nested as a special case. The method proposed by Kan et al. (2022) can

also incorporate refined estimates of expected returns and (co-)variances, such as

those obtained via shrinkage estimators or a single-factor structure, to form optimal

portfolios. We consider the following two specifications of their approach:9

– Kan et al. (2022) combined with MacKinlay and Pástor (2000) (KWZ - MP):

MacKinlay and Pástor (2000) utilize the implications of an asset pricing model

with a single risk factor to estimate expected returns. This approach reduces the

9We use estimation windows of 120 months and set the risk aversion coefficient to 3 in both PRs.
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number of parameters that need to be estimated, thereby mitigating estimation

risk.10

Ledoit and Wolf (2004) propose a shrinkage estimator of the covariance matrix

that involves a linear combination of the sample covariance matrix and the

identity matrix.11

• Galton-Shrinkage (GALTON):

Barroso and Saxena (2022) propose a shrinkage estimator that leverages the structure

of past OOS forecast errors to adjust the expected returns and expected (co-)variances

used as inputs for portfolio optimization. The corrected inputs are then used to

compute the Galton MV portfolio, whose weights result from a straightforward

Markowitz optimization applied to these adjusted inputs.12

The key formula for correcting the optimization inputs is:

Zt = ĝ0 + ĝ1Zt−1, (13)

where, for each variable Z of interest (mean returns, variances or pairwise correlations),

Zt−1 denotes its historical estimate at time t− 1 computed using a rolling window of

60 observations. Zt represents the cleansed portfolio input for t. Fama-MacBeth

regressions are employed to estimate the Galton shrinkage coefficients g0 and g1 for the

means, variances and pairwise correlations. These regressions are conducted on a

large estimation universe comprising the 500 largest US stocks at each point in time,

10The weights for this rule are given by Equation (51) in Kan et al. (2022).
11The weights for this rule are given by Equation (43) in Kan et al. (2022). KWZ-MP and KWZ-LW are

combination rules based on the assumption that returns are identically and independently multivariate
normally distributed.

12The weights for this rule are computed according to Equation (7) in Barroso and Saxena (2022).
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allowing for robust learning.13

To run the Fama-MacBeth regressions, we use 12 ex-post realizations, and to initialize

the Galton coefficients, we allocate an additional learning period of 108 months. In

the notation of Barroso and Saxena (2022), H = 60, E = 12 and L = 108. See

Equations (9) to (13) in Barroso and Saxena (2022) for details on estimating the

Galton coefficients. The slope coefficient in (13) determines the degree of shrinkage.

At one extreme, if its estimated value is 1, the corrected input equals the historical

estimates, i.e., the uncorrected estimates. At the other extreme, if its estimated value

is 0, the historical estimates are deemed completely unreliable, and the corrected

inputs are set to the grand mean of the returns, variances, or pairwise correlations

observed up to time t. Note that we restrict the slope coefficients to lie between 0 and

1. Let g1,mean, g1,var and g1,corr denote the Galton slope coefficients for the means,

variances, and correlations, respectively. Different extreme values of g1,mean, g1,var, and

g1,corr yield well-known strategies as special cases, namely

- the 1/N portfolio for g1,mean = g1,var = g1,corr = 0,

- the sample GMV for g1,mean = 0, g1,var = g1,corr = 1, and

- the sample Markowitz portfolio for g1,mean = g1,var = g1,corr = 1.

4.1.3 Baseline results

Table 1 presents the results for both the candidate PRs and the combined PRs. Given our

focus on economic utility, the certainty equivalent return (CER) is a natural choice for

13Barroso and Saxena (2022) consider both larger and smaller estimation universes and find similar results.
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measuring portfolio performance. We report annualized CERs14 without transaction costs as

well as with proportional transaction costs (CERTC) of 20 bps, in line with common choices

in the literature; see Kan et al. (2022). We further report the annualized Sharpe ratio

without transaction costs (SR) and with proportional transaction costs (SRTC) of 20 bps.15

As a measure of downside risk, we include the maximum drawdown (after transaction costs

of 20 bps (MaxDDTC)), given its relevance for asset managers and fiduciaries as emphasized,

by van Hemert et al. (2020), among others. Finally, we report the average monthly turnover

(Avg. TO).

The key findings from Table 1 can be summarized as follows. FLEXPOOL achieved the

highest CER and Sharpe ratio, both before and after transaction costs, outperforming not

only each candidate PR but also the alternative combination schemes. Notably, FLEXPOOL

nearly doubled the CER compared to the 1/N rule over an OOS evaluation period of 44

years.

Furthermore, FLEXPOOL outperformed STATPOOL in terms of CERs, Sharpe ratio,

and maximum drawdown. This result highlights the importance of placing greater weight on

recent utility when determining combination weights. Throughout the sample, distant utility

was consistently down-weighted, as reflected by a forgetting factor α that fluctuated between

0.93 and 0.96 (see Figure 2). In terms of downside risk, VOLTIME had the lowest maximum

drawdown at (0.369), with FLEXPOOL being a close second at 0.379.

14CERs are computed over the evaluation sample from τ∗∗ to T as

CER =


{
(1− γ) 1

T − τ∗∗ + 1

T∑
s=τ∗∗

U
(
w∗s (α

∗
s)
′
Rs

)} 1
1−γ

− 1

× 1, 200. (14)

15CERs are a more appropriate evaluation metric than the Sharpe ratio in our power utility framework,
which is designed to exploit time-varying investment opportunities; see, e.g., ? Nonetheless,we report the
Sharpe ratio due to its widespread use in evaluating the performance of asset allocation strategies.
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Figure 2: Evolution of the selected forgetting factor α in FLEXPOOL.

What combination weights were assigned to the different PRs, and how did they evolve

over time? Figure 3 provides the answers. The subplot in the upper left corner of the figure

displays the average weight shares of the PRs over the evaluation sample. The blue (red) bars

represent the weight shares assigned by FLEXPOOL (STATPOOL). The remaining subplots

illustrate the evolution of the PR weights over time, with the blue (red) lines showing

the combination weights of FLEXPOOL (STATPOOL). STATPOOL primarily split the

combination weights between GALTON and KWZ-MP, whereas the weights in FLEXPOOL

were more broadly distributed, with weight shares ranging from 13.68% (GALTON) and

25.09% (KWZ-MP) over the evaluation sample. Interestingly, GALTON received the lowest

average weight in FLEXPOOL, despite being the candidate PR with the highest CERs over

the evaluation sample. This outcome reflects the ensemble approach, which accounts for

(time-varying) interdependencies among PRs’ returns.

The optimal combination weights in STATPOOL are more persistent compared to those

of FLEXPOOL, where the weights change rapidly and often concentrate entirely on a single

candidate PR. For instance, VOLTIME received a high weight following the burst of the
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dotcom bubble and its aftermath, as well as during the subprime crisis. In contrast, during

the relatively calm period of the mid to late 1990s, the 1/N rule dominated. Next, we

conduct more in-depth analyses to better understand the mechanisms at work driving the

utility gains of FLEXPOOL.

Table 1: Summary of results for a cross-section of the 50 largest stocks.
The table presents results for the evaluation sample spanning 1977:01 to 2020:12. It reports annualized CERs
both without transaction costs and with proportional transaction costs (CERTC) of 20 bps for a power
utility investor with relative risk aversion of γ = 3. As additional performance measures, the table includes
thannualized Sharpe ratio before transaction costs (SR) and after proportional transaction costs of 20 bps
(SRTC), the maximum drawdown based on transaction-adjusted returns (MaxDDTC), and the average
monthly turnover (Avg. TO).

Candidate PRs CER CERTC SR SRTC MaxDDTC Avg. TO

1/N 4.20% 3.96% 0.512 0.499 0.541 0.078
VOLTIME 6.12% 5.88% 0.677 0.658 0.369 0.102
KWZ-MP 5.52% 4.92% 0.620 0.576 0.498 0.246
KWZ-LW 5.40% 4.08% 0.614 0.509 0.504 0.572
GALTON 6.24% 5.52% 0.703 0.642 0.461 0.310

Combined PRs

FLEXPOOL 8.16% 7.20% 0.828 0.751 0.379 0.418
STATPOOL 5.40% 4.80% 0.635 0.582 0.476 0.265
EQUAL WEIGHTS 6.00% 5.52% 0.690 0.651 0.402 0.196
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Figure 3: Combination weights.
The subplot in the upper left corner displays the average weight shares of FLEXPOOL (blue bars) and
STATPOOL (red bars) over the evaluation sample from 1977:01 to 2020:12. The remaining subplots illustrate
the evolution of the combination weights for the candidate PRs, with the blue lines representing FLEXPOOL
and the red lines representing STATPOOL.

4.1.4 In-depth analyses

Relationship between the number of combined PRs and economic utility

How does the performance of FLEXPOOL depend on the number of PRs combined? Thus

far, we have reported results only for the case where all five PRs are combined. What

happens if we combine subsets of two, three, or four PRs instead? In other words, what if we

set k to two, three, or four as an additional constraint in (10)?

Figure 4 displays the monthly CERs as a function of the number of PRs combined.16

The blue diamonds represent the CERs generated by specific subsets of combined PRs. For

instance, in the case of subsets with two PRs, there are
(
5
2

)
= 10 possible combinations. The

red square indicates the average CER for a given number of combined PRs. Figure 4 shows

16Here, we use monthly rather than annualized CERs for graphical reasons.
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that, on average, the CERs increase with the number of PRs combined.
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Figure 4: CERs as a function of the number of combined PRs using FLEXPOOL.
Blue diamonds represent the CERs for all possible combinations of a given number of combined PRs, while
red squares indicate the average CERs for each combination size.

The highest CER (0.0058) in the subset of two PRs is achieved by combining GALTON

and KWZ-LW, while the lowest performance (0.0032) results from the combination of the

1/N rule with KWZ-LW. In the subset with three PRs, the highest CER (0.0069) is obtained

by the combining VOLTIME, KWZ-MP, and KWZ-LW, whereas the lowest performance

(0.0047) is generated by the combination of the 1/N rule, GALTON and KWZ-MP.

For the subset of four combined PRs, the highest CER (0.0068) is achieved by omitting

the 1/N rule, and the lowest performance (0.0054) occurs when GALTON is omitted.

Notably, the CER for all subsets with four PRs exceeds that of the best single candidate PR

(0.0052).

The observation that the CER increases on average with the number of PRs combined

highlights the benefits of diversification across more than just two PRs. These benefits are

particularly notable given the positively correlated returns among the PRs, with empirical

Pearson’s correlation coefficients ranging from 0.64 (for 1/N and KWZ-MP) to 0.84 (for
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GALTON and VOLTIME).

Predictive power and risk management

Each PR, regardless of its construction, provides a record of asset weights and the

corresponding implied OOS returns. To gain deeper insights into the mechanics of our

combination framework, we analyze these asset weights and their relationship to the implied

OOS returns. Specifically, following Frahm (2015), we examine statistics related to the

predictive power and risk management of the candidate and combined PRs. As a measure of

predictive power, we use Spearman’s rank correlation coefficient ρ̂SP
(
ω∗∗, ˜̃r), a robust

correlation statistic, where

ω∗∗ =


ω∗1977:01

...

ω∗2020:12

 and ˜̃r =


r̃1977:01

...

r̃2020:12

 .

Here, ω∗∗ denotes the asset weights implied by the PRs and the combination weights

computed according to Equation (6), stacked from the beginning to the end of the evaluation

sample. With N = 50 assets and an evaluation sample spanning 528 months (1977:01 to

2020:12), the vector ω∗∗ has a length of 50× 528 = 26, 400. Similarly, ˜̃r represents the

stacked pseudo OOS excess returns generated by the N = 50 assets.17

The intuition behind the rank correlation ρ̂SP (ω∗∗, ˜̃r) is as follows: a PR assigns a

positive weight to an asset if its expected return is relatively higher compared to other assets.

Therefore, ρ̂SP
(
ω∗∗, ˜̃r) serves as an approximation of the PR’s overall predictive power. A

high positive correlation indicates strong predictive power.

With respect to risk management, as proxied by a PR’s ability to control the variance of

17For candidate PRs and the equally weighted benchmark combination, the optimal weights w∗s in
Equation (6) are replaced by assigning the full weight to the respective candidate PR or by distributing equal
weights, respectively.
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its returns, a PR assigns a low (high) squared weight ω∗,2s,n to the n-th asset if the n-th asset’s

expected squared return is high (low) for time s. Similarly, for a pair of assets p and q

(p 6= q), a PR takes a high (low) cross-exposure ω∗s,pω∗s,q when the product of the associated

asset returns is expected to be low (high). Based on this intuition, we compute Spearman’s

rank correlation ρ̂SP
(
ω∗∗∗,

˜̃̃
r

)
, where

ω∗∗∗ =



ω∗1977:01,n=1 × ω∗1977:01,n=1

... . . . ...

ω∗1977:01,n=1 × ω∗1977:01,n=50

... . . . ...

ω∗1977:01,n=50 × ω∗1977:01,n=50

... . . . ...

ω∗2020:12,n=1 × ω∗2020:12,n=1

... . . . ...

ω∗2020:12,n=1 × ω∗2020:12,n=50

... . . . ...

ω∗2020:12,n=50 × ω∗2020:12,n=50



and ˜̃̃r =



r̃1977:01,n=1 × r̃1977:01,n=1

... . . . ...

r̃1977:01,n=1 × r̃1977:01,n=50

... . . . ...

r̃1977:01,n=50 × r̃1977:01,n=50

... . . . ...

r̃2020:12,n=1 × r̃2020:12,n=1

... . . . ...

r̃2020:12,n=1 × r̃2020:12,n=50

... . . . ...

r̃2020:12,n=50 × r̃2020:12,n=50



.

The rank correlation ρ̂SP
(
ω∗∗∗,

˜̃̃
r

)
approximates a PR’s ability to control the variance

of the generated returns and can therefore serve as a proxy for risk management. The more

negative the correlation, the better the risk management performance of the PR.

Table 2 summarizes the results for predictive power and risk management. FLEXPOOL

demonstrates by far the highest predictive power, with an estimated rank correlation

coefficient of 0.0162, which is different from zero at the 1% significance level.
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Interestingly, FLEXPOOL achieves significant predictive power despite none of the

candidate PRs exhibiting significant predictive power when evaluated over the entire sample.

The key lies in FLEXPOOL’s ability to quickly adjust the combination weights towards

(combinations of) PRs with local predictive power.

In terms of risk management, VOLTIME performs the best by a considerable margin.

However, in its effort to maximize economic utility, FLEXPOOL implicitly strikes a balance

between predictive power and risk management, partially sacrificing VOLTIME’s superior

risk management to achieve better predictive power.

Table 2: Predictive power and risk management.
Spearman’s rank correlation ρ̂SP

(
ω∗∗, ˜̃r) serves as an approximation of predictive power, while Spearman’s

rank correlation ρ̂SP
(
ω∗∗∗,

˜̃̃
r

)
approximates risk management. The p-values for testing the null hypothesis

that the correlation coefficient equals zero are reported in parentheses below the correlation estimates.

Candidate PRs ρ̂SP

(
ω∗∗, ˜̃r) ρ̂SP

(
ω∗∗∗,

˜̃̃
r

)
1/N − −

VOLTIME − 0.0014
(0.8259)

−0.0525
(0.0000)

KWZ-MP 0.0042
(0.4932)

−0.0070
(0.2552)

KWZ-LW 0.0030
(0.6234)

0.0088
(0.1527)

GALTON 0.0074
(0.2283)

0.0076
(0.2162)

Combined PRs

FLEXPOOL 0.0162
(0.0085)

−0.0141
(0.0223)

STATPOOL 0.0037
(0.5506)

0.0003
(0.9617)

EQUAL WEIGHTS 0.0064
(0.2996)

−0.0126
(0.0401)
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CER differences across various economic and market conditions

We conduct a time-series regression of the difference between the monthly CER achieved by

FLEXPOOL and that achieved by one of the candidate PRs on a set of indicators that serve

as proxies for economic and market conditions:

∆CERt = β0 + β1NegRett + β2Rect + β3HighV olt + β4HighSentt + et, (15)

where ∆CERt represents the difference (in bps) between the monthly CER achieved by

FLEXPOOL and that achieved by one of the candidate PRs. The CERs are calculated for a

power utility investor with risk aversion coefficient of γ = 3. NegRet is a dummy variable

that equals 1 if the S&P 500 return in a given month is negative, and 0 otherwise. Rec is a

dummy variable that equals 1 if a given month falls within a recession regime as classified by

the NBER, and 0 otherwise. HighV ol is a dummy variable that equals 1 if the realized

variance (computed using daily S&P 500 returns) exceeeds the median realized variance over

the entire evaluation sample (1977:01 to 2020:12), and 0 otherwise. HighSent is a dummy

variable that equals 1 if the investor sentiment index of Huang et al. (2015) is above its

median value over the entire evaluation sample, and 0 otherwise.

Table 3 presents the estimated coefficients for the CER differences between FLEXPOOL

and those achieved by each candidate PR across different economic and market states, as

specified in Equation (15), with HAC-robust standard errors. A key takeaway from Table 3

is that the 1/N rule significantly underperforms FLEXPOOL when market returns are

negative, with an average shortfall of roughly 225 bps per month. This finding aligns with

Figure 3, which illustrates the evolution of the weights assigned to the candidate PRs over

time and highlights that the 1/N rule tends to be picked during calm periods.
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Table 3: Monthly CER differences (in bps) across various economic and market conditions.
The table reports the estimates of the slope coefficients for the time series regression in Equation (15) for the
evaluation sample from 1977:01 to 2020:12. CERs are computed for a power utility investor with risk aversion
coefficient γ = 3. ***, **, * indicates statistical significance at the 10%, 5%, and 1% level, respectively.

NegRet Rec HighVol HighSent
1/N 225.351∗∗∗ 46.401 7.027 −33.825
VOLTIME 8.964 4.141 29.146 14.69
KWZ-MP −63.523∗∗ 27.01 −9.639 −15.657
KWZ-LW 6.673 8.265 −5.020 6.282
GALTON −37.537∗∗ −1.331 −4.447 −4.920

Subsample analysis

We present subsample results (CER and CERTC) for the periods before and after 2001,

where the choice of the split point (January 2001) follows Avramov et al. (2023) and is

justified by the decimalization that occurred in January 2001, which significantly reduced

trading costs.18

Table 4 reports the results for CER and CERTC for the pre-2001 sample (1977:01 to

2000:12) and the post-2001 sample (2001:01 to 2020:12). The results indicate that the

performance of the PRs across different economic and market states is influenced by an

overarching trend: economic gains tend to be smaller for most PRs in the post-2001 period.

In the pre-2001 period, KWZ-MP and GALTON were the most successful individual

candidate PRs. However, using our ensemble approach, FLEXPOOL achieved higher CER

(CERTC) values than both of these candidate PRs, while also substantially outperforming

STATPOOL and EQUAL WEIGHTS. In the post-2001 period, the relative performance

of the candidate PRs changed notably compared to the pre-2001 sample. For instance,

KWZ-MP and GALTON, which were the top-performing candidate PRs in the pre-2001

period, were outperformed by VOLTIME and, in particular, by KWZ-LW in the post-2001

18Chordia et al. (2014) argue that decimalization increased liquidity and lowered trading costs, leading to
greater price efficiency and reduced profitability for anomaly-based trading strategies.
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sample. FLEXPOOL effectively adjusted the weights assigned to KWZ-MP and GALTON in

the post-2001 period, reducing KWZ-MP’s weight from over 45% to 1.21% and GALTON’s

weight from over 19% to less than 7%. In contrast, FLEXPOOL substantially increased the

weights for VOLTIME and KWZ-LW.

This pattern confirms our earlier analysis that FLEXPOOL successfully shifts weights to

(combinations of) PRs that perform well locally over time; see our discussion on predictive

power and risk management in this subsection. VOLTIME remains stable in both subsamples,

further supporting its previously documented robustness across different economic and

market states and time periods; see, e.g., Blitz and Van Vliet (2007) and Novy-Marx (2014).

In the post-2001 sample, FLEXPOOL performed roughly on par with the ex-post best

candidate PR, KWZ-LW, while STATPOOL and EQUAL WEIGHTS clearly underperformed

KWZ-LW.

Table 4: Subsample analysis.
The table reports the subsample results (CER and CERTC) for the pre-2001 period (1977:01 to 2000:12) and
the post-2001 sample (2001:01 to 2020:12). ∅ Share represents the average share of a PR assigned by
FLEXPOOL within each subsample.

Pre-2001 Post-2001
CER CERTC ∅ Share CER CERTC ∅ Share

Candidate PR
1/N 4.80% 4.56% 0.254 3.48% 3.36% 0.123
VOLTIME 6.36% 6.12% 0.077 5.76% 5.64% 0.456
KWZ-MP 7.92% 7.08% 0.452 2.76% 2.40% 0.012
KWZ-LW 3.84% 2.16% 0.023 7.32% 6.36% 0.337
GALTON 7.80% 6.96% 0.195 4.44% 3.84% 0.068

Combined PR
FLEXPOOL 9.00% 7.92% x 7.20% 6.24% x
STATPOOL 6.60% 5.76% x 4.20% 3.72% x
EQUAL WEIGHTS 6.72% 6.24% x 5.16% 4.80% x
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4.2 Application to market timing

4.2.1 Investment universe and empirical study design

In this application, we consider an investor with power utility preferences and a relative

risk aversion of γ = 3, who allocates their wealth monthly between the S&P 500 index

and three-month U.S. Treasury bills. The weight allocated to stocks is constrained to lie

within the range [0; 1.5], ensuring that the PRs under consideration adhere to these weight

constraints. The evaluation period spans from 1977:01 to 2020:12. Each PR generates its first

OOS return in 1967:01, and we use 60 months of OOS returns for the initial optimization of

the combination weights. An additional 60 observations are reserved for the initial tuning of

the forgetting factor α.

4.2.2 Candidate PRs

We consider a diverse set of six different PRs. The key output of each PR, relevant for our

ensemble approach, is the recommended asset weight for the S&P 500 index in each month.

The first three PRs are based on strategies that exploit Bayesian predictive densities of the

next period’s excess return y, defined as the return on the S&P 500 (including dividends) in

excess of the risk-free rate rf .

Bayesian predictive densities of excess returns are particularly attractive choices for

market timing decisions due to their ability to accommodate parameter and model uncertainty,

as well as their use of time-varying parameters (TVP) and stochastic volatility (SV). In the

context of return predictability, Bayesian predictive densities have been applied by Dangl and

Halling (2012), Johannes et al. (2014) and Pettenuzzo and Ravazzolo (2016), among others.

While the first three PRs in our library differ in terms of the specific choices made

for computing their respective Bayesian predictive densities, they can all be expressed in
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a canonical form. These PRs solve the investment problem by directly maximizing the

conditional expected utility of next period’s wealth Wt+1:

arg max
ωt+1∈[0;1.5]

Et

[
U(Wt+1)|Dt

]
= arg max

ωt+1∈[0;1.5]

∫
R̃1−γ
t+1

1− γ
p
(
yt+1|Dt

)
dyt+1. (16)

Here, p (yt+1|Dt) denotes the Bayesian predictive density for the excess return y in t + 1,

based on the information set available at time t. The information set Dt includes the returns

and predictors observable up to time t, as well as the choice of the prior at t = 0.

Since power utility is independent of wealth, we can set Wt = 1 and proceed with the

gross returns in (16). Let R̃t+1 denote the total gross return at time t + 1, where the

total return comprises the excess return y and the risk-free rate rf . Let ωt+1 represent the

weight allocated to the risky asset for time t+ 1. We approximate the maximization of

the conditional expected utility in (16) using B = 100, 000 potential realizations y(b)draw,t+1,

b = 1, . . . , B, of the excess return at t+ 1, drawn from the predictive density p (yt+1|Dt):

arg max
ωt+1∈[0;1.5]

1

B

B∑
b=1


[
ωt+1

(
1 + rft+1 + y

(b)
draw,t+1

)
+ (1− ωt+1)

(
1 + rft+1

)]1−γ
1− γ

 . (17)

We set γ = 3. To derive a Bayesian predictive density for the excess returns, we impose a

structure on the return-generating process. Specifically, we assume that the dynamics of the

excess return follow time-varying parameter (TVP) regression models with the following

structure:

yt+1 = X′tθt + εt+1, εt+1 ∼ N (0, υt+1) (18)

θt = θt−1 + ξt, ξt ∼ N (0,Ξt) , (19)
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where Xt denotes the vector of predictive variables observed at time t. This vector

includes a subset of twelve predictor variables from Welch and Goyal (2008), depending on

the specific setting.19

Let θt represent the vector of (unobserved) time-varying coefficients. The observation

error εt+1 is assumed to be normally distributed with mean zero and and time-varying (but

unknown) variance υt+1. The time-varying coefficients are modeled as evolving according to

a multivariate random walk without drift. We initialize the coefficients θ0 using a diffuse

conditional normal prior centered around zero.

The random shocks ξ are assumed to be multivariate normal with an unknown and

time-varying system covariance matrix Ξt. Conditional on the observational variance and the

system covariance, standard Bayesian methods for state-space models—using the Kalman

filter—can be applied to estimate the coefficients θt and compute the predictive distribution

of the returns. However, both the observation variance and the system covariance are

unknown. To model their dynamics, we employ a forgetting factor approach to model their

dynamics, where the forgetting factor δ governs the dynamics of the coefficients, and the

forgetting factor κ governs the dynamics of the observational variance. If we δ = 1, all

historical observations are equally weighted in the updating process, leading to constant

coefficients. If δ < 1, older observations are exponentially down-weighted. The smaller the

value of δ, the more strongly older observations are down-weighted.

Similarly, κ controls the dynamics of the observation variance. If κ = 1, the observation

variance remains constant. By using a conjugate specification with an inverse-gamma

19The predictors are the dividend yield, the dividend-payout ratio, the earnings-to-price ratio, the sum of
squared daily returns on the S&P 500 index (as a measure of stock variance), the book-to-market ratio,
the net equity expansion, the Treasury bill rate, the long-term government bond yields, the long-term
government bond returns, the default return spread, the default yield spread, and inflation (lagged by one
additional month). The data covers the period from 1927:01 through 2020:11 and was downloaded from Amit
Goyal’s homepage: http://www.hec.unil.ch/agoyal/. See Welch and Goyal (2008) for a more detailed
description of the variables.
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prior on the observation variance and a conditional normal prior on the coefficients, along

with fixed values for the forgetting factors δ and κ, we obtain a t-distributed predictive

density p (yt+1|Dt). This density accounts for the uncertainty in both the coefficients and

the observational variance. Our PRs based on Bayesian predictive densities consist of the

following three setups, which differ in terms of the included predictors and the chosen values

for the forgetting factors δ and κ:

• LARGE-TVP-SV:

This multivariate setup incorporates all twelve considered predictors from Welch and

Goyal (2008) and employs Bayesian model averaging (BMA) (Raftery et al., 1997) to

assign weights to the predictive densities, which are based on different specifications of

the coefficients’ dynamics. The dynamics are controlled by the forgetting factor δ,

chosen from the grid Sδ = {0.96; 0.97; 0.98; 0.99; 1.00}, where constant coefficients are

included as a special case. Thus, the five individual models Mj , j = 1, . . . , 5, in this

setup are defined by the different values of δ.

Given the conditional heteroskedasticity is a well-known stylized fact of asset returns,

we set the forgetting factor κ = 0.97 for the observational variance, following the

RiskMetricsTM choice for monthly data (J.P.Morgan/Reuters, 1996). A priori, equal

weights are assigned to the five predictive densities. At each point in time, the weights

of the predictive densities are updated using Bayes’ rule, and asset allocation decisions

are made based on the resulting mixture t-distribution, using the approximation in

(17).

Our LARGE-TVP-SV candidate PR is motivated by the fact that “kitchen-sink”-type

models for predicting the equity premium have demonstrated high utility gains in prior

research, despite their poor performance based on statistical measures (Beckmann and
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Schüssler, 2014; Cederburg et al., 2023; Kelly et al., 2024).20 We will provide further

explanation for this finding in Section 4.2.3.

• BMA-TVP-CV:

The second setup is based on the framework proposed by Dangl and Halling (2012).

With twelve available predictors, there are 212 different combinations of predictors that

can either be included in or excluded from the vector of predictors X. The forgetting

factor δ, which controls the dynamics of the coefficients, is again chosen from the grid

Sδ = {0.96; 0.97; 0.98; 0.99; 1.00}. This results in a total of 5× 212 = 20, 480 different

models Mj, j = 1, . . . , 20, 480, defined by the subset of included predictors and the

selected value of δ.

Dangl and Halling (2012) assume a constant variance (CV). To align with their

approach, we set κ = 1.00. A priori, we assign equal weights to the 20, 480 predictive

densities and update these weights using BMA.21

• UNIV-TVP-SV:

Univariate TVP-SV models are a common choice for capturing the dynamics of

aggregate stock returns (Johannes et al., 2014; Pettenuzzo and Ravazzolo, 2016). This

setup relies on univariate (UNIV) predictive regression, where each regression includes

only one of the twelve predictors. The grid

Sδ = {0.96; 0.97; 0.98; 0.99; 1.00} is used for δ, while κ is fixed at 0.97. All predictive

densities are equally weighted.

The following three PRs are based on a MV framework for constructing portfolios. These

20In Cederburg et al. (2023), this is a byproduct of their analysis; see footnote 15 in their paper. Their
framework allows for stochastic volatility, but not account for time-varying coefficients.

21While this setup closely follows Dangl and Halling (2012), there are slight differences in implementation.
For instance, Dangl and Halling (2012) include the cross-sectional beta premium as a predictor, which we we
exclude because the data are only available through 2002.
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PRs differ in how they estimate the excess return ŷt+1. The weight assigned to the S&P 500

index is calculated as follows:

ωt+1
[0;1.5]

=
1

γ

(
ŷt+1

σ̂2
t+1

)
. (20)

where σ̂2
t+1 is the estimated variance, computed over a rolling window of 60 months. The

risk aversion parameter γ is set to three. We consider the following PRs:

• Sum-of the-parts method (SOP):

Imposing economic constraints, Ferreira and Santa-Clara (2011) predict aggregate

stock returns as the sum of the dividend-price ratio and the long-term historical

average of earnings growth. Unlike predictive regressions, this approach requires no

parameter estimation and is therefore free from estimation error.

• Combination of forecasts à la Rapach et al. (2010) (RSZ):

Rapach et al. (2010) propose an equally weighted combination of point forecasts, where

each forecast is derived from univariate predictive regressions with constant coefficients,

using one of the predictors from Welch and Goyal (2008). It is worth noting that we

use monthly data, whereas Rapach et al. (2010) rely on quarterly data and consider 15

predictors instead of the 12 used here.

• Prevailing Historical Mean (PHM):

This PR uses the prevailing historical mean of the excess returns as its point forecast.

Our library of PRs encompasses conceptually distinct approaches to market timing.

These PRs utilize different information sets and employ various methods for translating that

information into asset weights. The most notable distinction among them is that some rely
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on Bayesian predictive densities (with varying designs), while others use different strategies

for generating point forecasts within an MV framework.

The PRs LARGE-TVP-SV, BMA-TVP-CV, UNIV-TVP-SV, and CF all rely on the

predictor variables proposed in Welch and Goyal (2008) as their information set. This set

comprises variables that have been widely suggested in the academic literature as predictors

of the equity premium. However, these four PRs employ markedly different econometric

approaches to exploit the predictors from Welch and Goyal (2008). These approaches range

from univariate regressions with constant or time-varying coefficients to models with constant

and stochastic volatility, incorporating different types of shrinkage or even no shrinkage at all

(as in LARGE-TVP-SV). These methodological differences highlight the uncertainty in

translating asset pricing rationales or empirical regularities in the predictability of return

moments into portfolio choices, even when the information set is universally agreed upon.

SOP (Ferreira and Santa-Clara, 2011) employs a different information set compared

to the four PRs discussed above. It leverages the varying time series persistence of the

components in its sum-of-the-parts approach, exploiting a specific empirical pattern to

improve return predictions. In contrast, PHM does not rely on any predictor information at

all.

These PRs, along with potentially many others, represent different ways of translating

asset pricing rationales or strategies—–often informed by empirical regularities—into portfolio

choices. For instance, time-varying coefficient models align with asset pricing theories

that incorporate time-varying risk aversion to explain fluctuations in risk premia; see, for

example, Campbell and Cochrane (1999). However, the exact model specification for utilizing

predictors or accounting for time variation in coefficients, as well as the functional form for

processing the data, remains unclear. Our ensemble approach accommodates a wide range of
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possible specifications, making it particularly well suited to addressing the uncertainty

inherent in this translation process.

4.2.3 Results

Table 5 presents the results. It includes annualized CERs both without transaction costs

(CER) and with proportional transaction costs (CERTC) of 20 bps. Additionally, we report

the annualized Sharpe ratio without transaction costs (SR) and with proportional transaction

costs (SRTC) of 20 bps. The R2
OOS-statistic (Campbell and Thompson, 2008) evaluates the

point forecast accuracy of a given approach relative to the PHM benchmark. It measures

the proportional reduction in the sample mean squared forecast error compared to the

prevailing historical mean benchmark. A positive R2
OOS-statistic indicates that the mean

squared forecast error of the given approach is lower than that of the PHM benchmark. As

a measure of predictive power, we report ρ̂SP (ω∗∗,y), the Spearman’s rank correlation

coefficient between the weights assigned to the risky asset and the realized excess returns.

Here, ω∗∗ denotes the stacked weights of the risky asset over the evaluation sample, and y

represents the vector of realized excess returns over the same period. For risk management,

we include ρ̂SP (ω∗∗,2,y2), the Spearman’s rank correlation coefficient between the squared

weights of the risky asset and the squared realized excess returns.

The empirical results can be summarized as follows: FLEXPOOL achieved the highest

CERs and Sharpe ratios among the combined PRs, demonstrating both strong predictive

power and robust risk management. While LARGE-TVP-SV exhibited the strongest

predictive power, SOP excelled in risk management. FLEXPOOL performed similarly to the

ex-post best candidate PR (LARGE-TVP-SV) in terms of CERs and the Sharpe ratio,

but outperformed in terms of maximum drawdown (0.2848), which is less than half of the
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maximum drawdown of the PHM (0.6601). During the OOS evaluation period of 44 years,

the annualized outperformance against the PHM was 336 bps for FLEXPOOL against the

PHM after transaction costs.

Table 5: Summary of results for market timing.
The table presents results for the evaluation sample from 1977:01 to 2020:12, including annualized CERs
both without transaction costs as well as with proportional transaction costs (CERTC) of 20 bps for a power
utility investor with a relative risk aversion of γ = 3. We also report the annualized Sharpe ratio without
transaction costs (SR) and with proportional transaction costs (SRTC) of 20 bps, as well as the maximum
drawdown for transaction-adjusted returns (MaxDDTC). To measure the accuracy of the point forecasts, we
include the R2

OOS-statistic. Predictive power and risk management ability are evaluated using Spearman’s
rank correlations: ρ̂SP (ω∗∗,y) for predictive power and and ρ̂SP (ω∗∗,2,y2) for risk management.

Economic Evaluation Criteria Statistical Properties
Candidate PRs CER CERTC SR SRTC MaxDDTC R2

OOS ρ̂SP (ω
∗∗,y) ρ̂SP (ω

∗∗,2,y)

LARGE-TVP-SV 11.52% 10.80% 0.709 0.661 0.346 −0.1133 0.1139
(0.0088)

− 0.0295
(0.4989)

BMA-TVP-CV 8.04% 7.80% 0.489 0.472 0.410 −0.0388 0.0145
(0.7390)

− 0.0787
(0.0714)

UNIV-TVP-SV 8.16% 7.84% 0.503 0.483 0.350 −0.0090 0.0176
(0.4150)

−0.0885
(0.0422)

SOP 8.52% 8.40% 0.540 0.527 0.583 0.0003 0.0614
(0.1592)

− 0.1213
(0.0530)

RSZ 8.28% 8.16% 0.505 0.496 0.646 0.0010 0.0143
(0.7433)

− 0.0115
(0.7928)

PHM 7.68% 7.56% 0.481 0.479 0.660 0.0000 − 0.0256
(0.5578)

− 0.0302
(0.4880)

Combined PRs

FLEXPOOL 11.54% 10.92% 0.715 0.681 0.285 −0.0502 0.0888
(0.0413)

− 0.0979
(0.0245)

STATPOOL 10.68% 10.08% 0.668 0.624 0.304 −0.0978 0.0929
(0.0329)

−0.0292
(0.5030)

EQUAL WEIGHTS 9.36% 9.24% 0.579 0.565 0.450 0.0035 0.0577
(0.1859)

−0.0844
(0.0525)

Among the candidate PRs, LARGE-TVP-SV achieved by far the highest CERs and

Sharpe ratio, despite its low R2
OOS-statistic of −0.1133. This result aligns with findings by

Cenesizoglu and Timmermann (2012) and Leitch and Tanner (1991), who demonstrate that

the point forecast accuracy of a model and its economic value can diverge significantly. As

such, the R2
OOS-statistic may be an unreliable indicator for guiding portfolio decisions.

LARGE-TVP-SV overfits the data due to its use of numerous predictors, time-varying

coefficients, and the absence of a shrinkage mechanism, which contribute to the low

R2
OOS-statistic. As a complex model, LARGE-TVP-SV excels at capturing return patterns,

44



offering high predictive correlations compared to shrunk models where signals are dampened.

However, the high variance of its forecasts results in a low R2
OOS-statistic. Notably, this low

R2
OOS-statistic does not adversely affect economic utility. The weight restrictions on the

risky asset (i.e.,no short selling and up to 50% leverage) prevent excessively volatile portfolio

weights. Thus, complex methods like LARGE-TVP-SV benefit from their strong predictive

signals while avoiding the drawbacks associated with the high volatility of forecasts and the

resulting asset weights. For a broader discussion on the advantages of complexity in portfolio

choice within a different context, see Kelly et al. (2024).

Similar to the findings in our first application, we observe that predictive power and

risk management—indicated by positive values of ρ̂SP (ω∗∗,y) and negative values of

ρ̂SP (ω∗∗,2,y2)—align well with the ranking of the CER and the Sharpe ratios. While our

approach, which directly optimizes utility at the PR level, successfully captures the strong

economic performance of LARGE-TVP-SV, combination methods based solely on statistical

measures, such as R2
OOS-statistics, would fail to do so.

The evolution of the combination weights is illustrated in Figure 5. For most of the time,

LARGE-TVP-SV received a high weight, often comprising the entire allocation. However,

SOP, with its strong risk management, was selected during three notable turbulent periods:

first, in September and October 1998, following the strongly negative returns of August

1998, a period linked to the Russian currency crisis and the collapse of Long Term Capital

Management. Second, SOP was selected from 2000:12 to 2003:10, during the aftermath of

the dotcom bubble burst. Finally, SOP was picked from 2020:04 to 2020:07, following the

sharp market drop caused by the COVID-19 pandemic in March 2020. Similar to our first

application, these results highlight FLEXPOOL’s ability to dynamically balance predictive

power and risk management across candidate PRs while maximizing economic utility.
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The forgetting factor α was set to 0.96, as determined by (9), for the entire evaluation

period. The emphasis on the recent economic utility gains facilitated faster adjustments in

the combination weights compared to STATPOOL (see Figure 5).
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Figure 5: Evolution of combination weights.
The subplots show the evolution of the combination weights. The blue (red) lines show the combination
weights in FLEXPOOL (STATPOOL).

Approaches such as SOP or UNIV-TVP-SV shrink their coefficients towards zero by utilizing

subsets of the predictors. As expected, these approaches achieve higher the point forecast

accuracy, as measured by R2
OOS-statistics, compared to LARGE-TVP-SV, due to their

shrinkage mechanisms. However, their predictive power, as reflected by the rank correlation

ρ̂SP (ω∗∗,y), is considerably lower, along with their CERs and Sharpe ratios.

Similarly, equally weighted PRs, such as SOP and CF, demonstrate reasonable point

prediction accuracy but perform noticeably worse than LARGE-TVP-SV in terms of CERs

and SRs. Notably, PHM received temporarily high weights during the relatively calm

mid-to-late 1990s, a result consistent with our first application, where 1/N also received high
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weights during this period. This suggests a tendency for simple PRs to be favored in stable

periods, while more flexible PRs are selected during turbulent times.

Figure 6 illustrates the CER as a function of the number of combined PRs. Blue

diamonds represent the CERs generated by individual subsets of combined PRs, while red

squares indicate the average CER for each combination size. Consistent with the findings

from our first application, the average CER increases as the number of combined PRs grows.

1 2 3 4 5 6

Number of combined PRs

0.006

0.007

0.008

0.009

0.010

0.011

C
E

R

Figure 6: CERs as a function of the number of combined PRs using FLEXPOOL.
Blue diamonds represent the CERs for all possible combinations of a given number of combined PRs, while
red squares indicate the average CERs for each combination size.

The results of this application highlight the critical importance of translating asset

pricing rationales into portfolio choice. Predictive regressions (PRs) based on combinations of

univariate models, such as UNIV-TVP-SV and CF, yield relatively low CERs and contribute

minimally to the combination. This finding aligns with Welch and Goyal (2008), who

reported no utility gains (relative to PHM) for individual predictors. Similarly, Goyal et al.

(2024) dismissed most predictors proposed after Welch and Goyal (2008) based on their lack

of economic utility when evaluated individually.
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However, as shown in Table 5, LARGE-TVP-SV delivered strong predictive signals and

played a pivotal role in the combination, demonstrating the substantial economic benefits of

leveraging multinple predictors, along with time-varying coefficients and stochastic volatility.

SOP and PHM, which are derived from distinct information sets, also contributed to the

ensemble. SOP, with its strong risk management capabilities, was predominantly selected

during recessions, while PHM was favored during expansions and periods of economic

stability.

4.2.4 CER differences across various economic and market conditions

Table 6 presents the estimated coefficients for the CER differences between FLEXPOOL and

those achieved by individual candidate PRs under various economic and market conditions,

as specified in Equation (15). During periods of negative market returns, FLEXPOOL

outperformed all candidate PRs except LARGE-TVP-SV and SOP. Specifically, FLEXPOOL

outperformed PHM by approximately 225 bps per month on average during periods of

negative market returns. This result is consistent with Figure 6, which illustrates that the

PHM rule is more commonly selected during calm market periods.

Table 6: Monthly CER differences (in bps) across various economic and market conditions.
The table reports the coefficient estimates for the time-series regression specified in Equation (15), based on
the evaluation sample from 1977:01 to 2020:12. CERs are calculated for a power utility investor with
risk aversion coefficient γ = 3. ***, **, * indicate statistical significance at the 1%, 5%, and 10% level,
respectively.

Candidate PR NegRet Rec HighVol HighSent
LARGE-TVP-SV −39.950 13.505 −15.060 −2.929
BMA-TVP-CV 116.176∗∗∗ 62.216 −50.715 17.666
UNIV-TVP-SV 91.197∗∗∗ 71.958 15.349 24.713
SOP −104.640∗∗ 116.042 −9.594 25.267
RSZ 125.335∗∗∗ 115.318 −28.607 −0.235
PHM 224.678∗∗∗ 113.957 −29.060 11.228
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4.2.5 Subsample analysis

We present subsample results (CER and CERTC) for the pre-2001 and post-2001 periods.

Table 7 reports CER and CERTC for the pre-2001 sample (1977:01 to 2000:12) and the

post-2001 sample (2001:01 to 2020:12). To provide additional context and motivated by the

findings of Löffler (2022), which highlight that the BUY-and-HOLD strategy tends to be a

tougher benchmark than the PHM, we also report results for the BUY-and-HOLD strategy

across both subsamples.

Notably, CERs were substantially higher in the pre-2001 period for all candidate PRs

(including the BUY-and-HOLD strategy) as well as for the combined PRs. This suggests

that, while different market conditions influenced returns, an overarching trend of a less

attractive risk-return profile emerged in the post-2001 period.

In both subsamples, FLEXPOOL performed consistently well, roughly on par with

LARGE-TVP-SV, the best-performing candidate PR. The relatively strong performance of

LARGE-TVP-SV reinforces our findings from Section 4.2.3, where we highlighted its high

predictive power as a key feature (see Table 5). The subsample analysis further demonstrates

that this strong performance is not limited to short episodes but persists over extended

periods.
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Table 7: Subsample analysis.
The table reports the subsample results (CER and CERTC) for the pre-2001 sample from 1977:01 to 2000:12
and the post-2001 sample from 2001:01 to 2020:12. ∅ Share represents the average share of a PR assigned by
FLEXPOOL within each subsample.

Pre-2001 Post-2001
CER CERTC ∅ Share CER CERTC ∅ Share

Candidate PR
LARGE-TVP-SV 13.80% 11.96% 0.490 8.76% 8.16% 0.655
BMA-TVP-CV 10.20% 9.84% 0.135 5.64% 5.40% 0.104
UNIV-TVP-SV 10.68% 10.32% 0.000 5.16% 4.80% 0.049
SOP 12.48% 12.24% 0.075 3.84% 3.72% 0.177
RSZ 12.96% 12.84% 0.010 2.76% 2.64% 0.000
PHM 11.74% 11.74% 0.289 2.76% 2.76% 0.016

Combined PR
FLEXPOOL 14.40% 13.92% x 8.16% 7.68% x
STATPOOL 12.84% 12.12% x 8.04% 7.56% x
EQUAL WEIGHTS 12.72% 12.48% x 5.40% 5.28% x

BUY-and-HOLD 11.76% 11.76% x 5.04% 5.04% x

4.2.6 Alternative settings and additional PRs

In addition to the results presented thus far, we examined three alternative empirical settings.

First, we included the buy-and-hold strategy (without leverage) as an additional candidate

PR in the library. This strategy achieved an annualized CER of 8.76% and an annualized

Sharpe ratio of 0.525. Notably, we found that adding the buy-and-hold strategy to the

ensemble had little impact on our overall results. The other two alternative settings utilized

data available only for shorter time periods.

First, we evaluated the utility gains from combining PRs based on backward-looking data

with those based on forward-looking data. As a representative of a PR using forward-looking

data, we selected the strategy proposed by Pyun (2019), which provides OOS forecasts

of the equity premium derived from the variance risk premium. This approach leverages

the relationship between the market risk premium and the price of variance risk through
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variance risk exposure. The point forecasts are available from 1990:02 to 2019:12.22

We used a rolling window of 60 months to compute the variance estimate as an additional

input to the MV specification (20) and applied the same weight restrictions (no short selling

and up to 50% leverage) as in our previous analysis. This PR was combined with the

LARGE-TVP-SV rule as a representative of PRs using backward-looking data, and we

computed results for the evaluation period from 2000:01 to 2019:12.

The PR based solely on forward-looking data only produced an annualized CER of 9.36%

and an annualized Sharpe ratio of 0.728. LARGE-TVP-SV achieved an annualized CER of

8.40% and an annualized Sharpe ratio of 0.677. Using FLEXPOOL to combine the two PRs

slightly improved the results, yielding an annualized CER of 9.48% and an annualized

Sharpe ratio of 0.743. For comparison, PHM achieved an annualized CER of 1.68% and an

annualized Sharpe ratio of 0.284 over this truncated sample.

Second, we investigated whether incorporating a PR based on the approach recently

proposed by Dong et al. (2022) could enhance performance relative to LARGE-TVP-SV.

Dong et al. (2022) introduce a novel method that utilizes the returns of 100 cross-sectional

anomaly portfolios as predictors for point forecasts of aggregate excess returns. These

forecasts are available from 1975:01 to 2017:12.23

For this shortened period, we combined the strategy of Dong et al. (2022) with LARGE-

TVP-SV and evaluated the results for the sample from 1985:01 to 2017:12. Using the MV

specification (20), we selected a setting where the elastic net was employed as the shrinkage

technique for estimating expected excess returns. We also used a rolling window of 60

months to compute the variance and applied the same weight restrictions (no short selling,

22We downloaded the data from Sungjune Pyun’s homepage: https://sjpyun.github.io/research.
html.

23We downloaded the forecasts from Dave Rapach’s homepage:
https://sites.google.com/slu.edu/daverapach/publications.
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up to 50% leverage) as in our previous analysis.

LARGE-TVP-SV produced an annualized CER of 9.84%, while the approach proposed

by Dong et al. (2022) achieved an annualized CER of 11.16%. The combination of both PRs

using FLEXPOOL yielded an annualized CER of 11.76%, further confirming the value of

complex PRs in enhancing economic utility.

5 The relative strengths of FLEXPOOL

As a stacking method capable of combining conceptionally distinct estimators (i.e., PRs in

our case), FLEXPOOL seeks to diversify their idiosyncratic risks while leveraging their

individual strengths. Existing combination methods, such as those proposed by Tu and Zhou

(2011) and Kan et al. (2022), are constrained in terms of both the number and type of PRs

they can combine. In contrast, FLEXPOOL has the flexibility to integrate a large number

of diverse PRs. This ability to combine PRs from different domains is a key strength of

FLEXPOOL.

It is important to emphasize that FLEXPOOL should not be viewed as a substitute for

combination rules grounded in a specific structure, such as those derived from asset pricing

models. For example, consider the KWZ-MP rule of Kan et al. (2022), described in Section

4.1.1. This PR focuses on maximizing the expected OOS utility, with the weight vector

defined as:

ŵq,t = ŵMP
g,t +

g3

(
ψ̂2
t

)
γ

ŵMP
z,t ; (21)

see Formula 51 in Kan et al. (2022). Essentially, the KWZ-MP rule combines the GMV

portfolio (ŵMP
g,t ) with a long-short zero-investment portfolio (ŵMP

z,t ). The parameter g3
(
ψ̂2
t

)
is estimated using various inputs, including mean and the covariance matrix estimates.
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The estimation process is informed by the factor structure proposed by MacKinlay and

Pástor (2000), which minimizes estimation error when combining two specific building

blocks, namely (ŵMP
g,t ) and (ŵMP

z,t ). In contrast, FLEXPOOL estimates the parameter

g3

(
ψ̂2
t

)
parameter using a simple linear combination approach, bypassing additional data

and the factor structure. A modified version of FLEXPOOL optimizes the weight of the

zero-investment portfolio to maximize the pseudo OOS utility.24

Empirically, the CER derived from the portfolio with the estimated weight for the

long-short zero-investment portfolio in FLEXPOOL is slightly lower than that obtained using

the KWZ-MP rule. Specifically, the KWZ-MP rule achieves an annualized CER of 5.52%

before and 4.92% after transaction costs, compared to 5.28% and 4.68% for FLEXPOOL.25

This marginal outperformance of KWZ-MP over FLEXPOOL in this specific scenario is

unsurprising, given that KWZ-MP is explicitly optimized for the two PRs considered here.

However, the KWZ-MP method does not accommodate additional PRs, such as VOLTIME

or GALTON shrinkage, within its framework. This limitation underscores the value of our

more general approach.

As demonstrated in our application to a cross-section of 50 stocks in Section 4.1,

combining KWZ-MP with 1/N , VOLTIME, KWZ-LW, and GALTON, substantially enhances

performance. FLEXPOOL, in this case, surpasses KWZ-MP by roughly 264 bps in terms

of annualized CER (see Table 1). FLEXPOOL also exhibits a notably lower maximum

drawdown. Thus, FLEXPOOL should be viewed as a complementary method to existing

24In this configuration, FLEXPOOL was tuned by setting the GMV portfolio weight to 1 and constraining
g3

(
ψ̂2
t

)
within the range between [0; 1]. This ensured the resulting portfolio weights sum to 1, with the

limiting cases being the GMV portfolio (if g3
(
ψ̂2
t

)
is 0) and the plug-in portfolio (if g3

(
ψ̂2
t

)
is 1). Although

this setup slightly differs from the FLEXPOOL configuration—which uses a convex combination of candidate
PRs—the optimization approach for the zero-investment portfolio weight is analogous to FLEXPOOL’s
method of addressing the combination problem.

25As in Section 4.1, the largest 50 stocks were used as the asset universe, with the same time frame applied
for estimation and evaluation. The evaluation sample spans the period from January 1977 to December 2020.
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combination rules rather than a competing approach designed to replace them.

The relative strength of FLEXPOOL in combining specialized and heterogeneous PRs

(“strong learners”), rather than replacing existing combination methods, lies in its foundation

within stacking algorithms. Stacking has been shown to exhibit robust properties both

asymptotically and in finite samples (see, e.g., Wolpert, 1992; Breiman, 1996; Van der Laan

et al., 2007; Polley and Van Der Laan, 2010; Wang et al., 2023). It has primarily been

applied in predictive scenarios to aggregate diverse candidate estimators, such as random

forests, neural networks, and polynomial linear models, into a single final estimator.

Typically, simple estimators, such as regression trees (“weak learners”), are aggregated

(e.g., through random forests or boosting) before being included in the stacking algorithm.

While the candidate estimators in an ensemble are often complex to capture hidden structures

in the data, the aggregation function within stacking algorithms is usually linear. Moreover,

the weights assigned to candidate estimators are constrained to be between 0 and 1 and sum

to one (i.e., a convex combination).26

In summary, FLEXPOOL is not designed to “reinvent the wheel” by replacing existing

PRs that combine different building blocks in a targeted manner, such as the KWZ-MP rule.

Instead, such rules can be included in the pool of candidate PRs and combined within the

FLEXPOOL framework. However, due to the nature of stacking algorithms, relying solely

on FLEXPOOL to combine a set of relatively simple PRs may not be the most effective

strategy if a targeted combination approach for these PRs has already been developed.

As a second illustrative example, consider a pool of candidate PRs consisting of three

26Although nonlinear and more complex aggregation functions are theoretically possible, they have not
been widely adopted. The convex combination approach has been found to provide stability (see, e.g.,
Breiman, 1996; Van der Laan et al., 2007; Polley and Van Der Laan, 2010). Recall that, in the context of
combining PRs, the convex combination offers an additional advantage: it ensures that any restrictions on
asset weights imposed at the level of the candidate PRs (e.g., no short selling, sector weight limits, etc.) are
preserved at the level of the combined PRs.
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simple rules: 1/N , the (simple plug-in version of the) Markowitz portfolio, and GMV. While

the GALTON shrinkage method proposed by Barroso and Saxena (2022) is not strictly a

combination method, its solution to the asset allocation problem is spanned by 1/N , the

(simple plug-in version of the) Markowitz portfolio, and GMV as limiting cases (see Section

4.1.2 for details).

The GALTON shrinkage method determines the optimal degree of shrinkage for means

and (co-)variances by using OOS forecast errors and shrinkage targets, requiring the

estimation of several parameters from the data within the shrinkage framework. This method

employs sophisticated mechanisms to process data with shrinkage targets, leveraging specific

information to shrink means, variances, and covariances. In contrast, FLEXPOOL uses a

convex combination approach.

Table 8 compares the empirical performance of GALTON and FLEXPOOL.27 GALTON

outperformed FLEXPOOL on both pre- and post-transaction cost performance measures.

However, within the framework of Barroso and Saxena (2022), there is no way to combine

the GALTON rule with additional, potentially diverse PRs.

When FLEXPOOL is used to combine GALTON with 1/N , VOLTIME, KWZ-MP, and

KWZ-LW, the resulting utility gains are substantially higher than when relying on GALTON

alone, yielding an additional 168 bps per year in CER after transaction costs (see Table 1).28

The results underscore a key principle: when specialized combination methods are

available for simple rules, they should be incorporated as candidate PRs within our approach.

In the absence of such methods, FLEXPOOL serves as a versatile, general-purpose solution

27As in Section 4.1, the largest 50 stocks were used as the asset universe, with the same time frame
applied for estimation and evaluation. The evaluation sample spanned the period from January 1977 to
December 2020.

28One might question how the results would change if the 1/N rule was excluded from the pool of PRs in
Table 1, given that the 1/N rule is also used as a building block for GALTON. Omitting 1/N from the pool
of candidates in 1 changes the results very little, with an annualized CER of 8.14% before and 7.09% after
transaction costs.
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that can deliver substantial economic gains compared to relying on any single PR, regardless

of how it is selected.

Table 8: Comparison of FLEXPOOL and GALTON in a pool of simple rules.
The table presents results for the evaluation sample from 1977:01 to 2020:12, including annualized CERs
both without transaction costs (CER) and with proportional transaction costs (CERTC) of 20 bps for a
power utility investor with a relative risk aversion of γ = 3. Additionally, the table reports the annualized
Sharpe ratio before transaction costs (SR) and after proportional transaction costs of 20 bps (SRTC). Avg.
TO represents the average monthly turnover.

CER CERTC SR SRTC Avg. TO

1/N 4.20% 3.96% 0.512 0.500 0.078
Markowitz −174.36% −438.36% 0.126 −0.494 99.031
GMV 3.84% 0.96% 0.485 0.294 1.154

GALTON 6.24% 5.52% 0.703 0.642 0.310
FLEXPOOL 4.56% 4.20% 0.524 0.496 0.108

6 Concluding remarks and future research

We have introduced an ensemble framework for combining conceptually distinct PRs. This

approach enables researchers to leverage the wide array of existing PRs within a utility

maximization framework, diversifying away the idiosyncratic risks of individual PRs while

preserving their desirable properties. Notably, our framework integrates the strengths of

PRs regardless of their design and without imposing distributional assumptions on the

data-generating process underlying the PRs’ returns.

Extensive applications to a cross-section of stocks and market timing demonstrate the

effectiveness of our approach. The combined PRs consistently achieved OOS certainty

equivalent returns that were either superior to those of any single candidate PR or comparable

to the ex-post best-performing PR. Importantly, from an ensemble perspective, the PR with

the highest individual utility did not always receive the highest weight in the combination.

Instead, rapidly adjusting combination weights proved critical in enhancing OOS utility by

capturing the time-varying performance of individual PRs. Detailed analyses highlighted
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how the flexible combination framework balances predicting the level of asset returns with

anticipating their variance. Moreover, the findings reveal that, on average, utility gains

increase with the number of candidate PRs, even without imposing additional regularization

on combination weights to mitigate estimation risk.

Our ensemble framework offers researchers and investors a robust method to address

uncertainties about which asset pricing theories or empirical patterns to prioritize and how

to translate them into portfolio decisions. The key contribution of our study lies in its

potential to transform the approach to portfolio choice problems: rather than focusing on

identifying a single best PR, our framework allows a diverse library of candidate PRs to

collectively contribute their strengths, akin to optimizing a portfolio of assets. While the

search for innovative PRs will continue—driven by advancements in methodologies and

data—our framework provides a valuable tool for evaluating the incremental empirical merits

(or limitations) of newly proposed PRs.

Future research offers several promising avenues to explore. While it is impossible for any

candidate pool to be exhaustive given the vast range of potential PRs, constructing larger

pools of candidate PRs could be a worthwhile endeavor. Incorporating a pre-screening step

to maximize heterogeneity—using an appropriate distance measure—might further enhance

the diversity and effectiveness of the pool.

Our proposed method could also be valuable for exploring specific questions, such as the

impact of “green” versus “brown” stocks on portfolio performance. In this context, our

ensemble approach could provide a more objective evaluation compared to relying on a single

PR. Another potential application is to assess whether expert-driven PRs can add value to

purely algorithmic PRs.
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